Question 1

1(a)	calcium oxide	1
1(f)	carbon monoxide	1
Question 2		

2(e) CO ₂	2(e)
------------------------	------

Question 3

3(a)(i)	hematite	1
3(a)(ii)	1 mark each for any four of:	4
	the production of carbon monoxide carbon burns in oxygen / air	
	to form carbon dioxide	
	carbon dioxide reduced by carbon / reacts with carbon to form carbon monoxide	
	the role of carbon monoxide iron(III) oxide reduced by carbon monoxide	
	the role of calcium carbonate, added to the blast furnace - calcium carbonate decomposes to calcium oxide	
	calcium oxide reacts with impurities / silicon(IV) oxide (in iron ore)	
	slag formed / calcium silicate formed	
3(a)(iii)	arrangement: irregular / no (particular) arrangement (1)	2
	motion: sliding over each other	

Question 4

4(b)	to provide heat / increase temperature (1)	2
	to produce carbon dioxide (from the combustion of carbon) (1)	

Question 5

	5(b)(i)	CO ₂ loses oxygen	1
I	5(b)(ii)	redox	1

5(b)(iii)	breakdown of a compound (1)	2
	by heating / using heat / high temperature (1)	

Question 6

6(a)(v) D	1	
-----------	---	--

Question 7

7(-)(1)	
/(a)(i) CaO	1

Question 8

8(c)	making cement / making steel / neutralising acidic soils / flue gas desulfurisation / making glass	1	I
0(0)	making certent/making steer/neutralising actuic solis/nide gas desultatisation/making glass		ı

Question 9

9(c)(i)	hematite (1)	1
9(c)(ii)	2 (Fe) (1)	2
	3 (CO ₂) (1)	
9(c)(iii)	breakdown of a compound (1)	2
	by heat / when heated / using thermal energy (1)	
9(c)(iv)	3 rd box down ticked (it reacts with impurities in the iron ore to form slag)	1
9(c)(v)	less iron ore mined / conserves iron ore / less energy used to produce iron / conserves fuels	1

Question 10

10(a)	coke	1
10(a)(ii)	provide heat	1
10(b)(i)	M1 160	2
	M2 112 AND 70.(0)(%)	
10(b)(ii)	hematite	1
10(b)(iii)	by reduction of carbon dioxide	1
10(b)(iv)	Fe ₂ O ₃ + 3CO → 2Fe + 3CO ₂	2
	M1 species	
	M2 correct equation	
10(b)(v)	reduction	1
10(c)	thermal decomposition	1
10(d)(i)	M1 CaO is basic	2
	M2 SiO ₂ is acidic	
10(d)(ii)	M2 SiO ₂ is acidic M1 silicon(IV) oxide	2
10(d)(ii)		2
10(d)(ii) 10(e)(i)	M1 silicon(IV) oxide	2
	M1 silicon(IV) oxide M2 slag	
	M1 silicon(IV) oxide M2 slag aluminium is above carbon in the reactivity series	
	M1 silicon(IV) oxide M2 slag aluminium is above carbon in the reactivity series OR	
10(e)(i)	M1 silicon(IV) oxide M2 slag aluminium is above carbon in the reactivity series OR aluminium is more reactive than carbon	1
10(e)(i)	M1 silicon(IV) oxide M2 slag aluminium is above carbon in the reactivity series OR aluminium is more reactive than carbon electrolysis	1

Question 11

11(c)	iron	1

Question 12

12(b)	aluminium oxide	1
\ /		

Question 13

13(c)(i)	bauxite	1
13(c)(ii)	M1 cryolite (1)	2
	M2 lowers operating temperature OR improves conductivity (1)	
13(c)(iii)	$Al^{3+} + 3e^- \rightarrow Al$	2
	M1 A \mathcal{P}^+ + 3e ⁻ on the left-hand side (1)	
	M2 equation correct (1)	
13(c)(iv)	M1 (anodes of) carbon react with oxygen (formed at the anode) (1)	2
	M2 (form) carbon dioxide (1)	

Question 14

14(b)(i)	aluminium oxide	1
14(b)(ii)	any two from: solvent lowers the operating temperature increases conductivity	2
14(b)(iii)	carbon reacts with oxygen and forms carbon dioxide	1